If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x=33
We move all terms to the left:
4x^2+16x-(33)=0
a = 4; b = 16; c = -33;
Δ = b2-4ac
Δ = 162-4·4·(-33)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-28}{2*4}=\frac{-44}{8} =-5+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+28}{2*4}=\frac{12}{8} =1+1/2 $
| 10=9a-7a | | (y/5+3=6 | | 2/x+1-x/6=0 | | 180=x+(2x+1)+(2x-1) | | 12=z+5z | | 3(6x-10)-5(2-4x)=25x-1 | | 72=1/3(a)(9) | | 2^3x+4=10 | | 8x–(20+8)=40 | | 10=3j+2j | | -15=r+3 | | 3=2x- | | 13=7f+6f | | -3x+2=10+x | | 0.8x0+9=8(0.6x0-2) | | (x/3)+1=5 | | 7x(9x2)=5x-6 | | 5x=17+8x | | 6/7x+10=26 | | 0.8x-2.6=0.6x^2 | | q/2.1=-6.8 | | 14-|2x+8|=4 | | 8u+4=2(u-1) | | 2(x+5)-1=17 | | 56=5y-14 | | -8(w-2)=-4w+32 | | 6/7x-10=26 | | 18=2u-8 | | -12.1=x/6+7.1 | | 4y+16=84 | | -2n+1=5 | | 12x-18=20x-50 |